Using remotesyn and added NCO

This commit is contained in:
Jojojoppe
2025-10-05 23:20:25 +02:00
parent 639541728f
commit 83cc449c6f
35 changed files with 397 additions and 147990 deletions

176
rtl/core/nco_q15.v Normal file
View File

@@ -0,0 +1,176 @@
`timescale 1ns/1ps
// ------------------------------------------------------------
// nco_q15.v
// Tiny DDS/NCO @ FS_HZ sample rate with Q1.15 sine/cos outputs
// - Phase accumulator width: PHASE_BITS (default 32)
// - Quarter-wave LUT: 2^QTR_ADDR_BITS entries (default 64)
// - Clock domain: CLK_HZ (default 120 MHz), creates 1-cycle strobe at FS_HZ
// - Frequency control: write 'ftw' (32-bit tuning word)
// FTW = round(f_out * 2^PHASE_BITS / FS_HZ)
// ------------------------------------------------------------
module nco_q15 #
(
// -------- Synth parameters --------
parameter integer PHASE_BITS = 32, // accumulator width
parameter integer QTR_ADDR_BITS = 6, // 64-entry quarter-wave LUT
parameter integer CLK_HZ = 120_000_000, // input clock (Hz)
parameter integer FS_HZ = 40_000 // output sample rate (Hz)
)
(
input wire clk, // CLK_HZ domain
input wire rst_n, // async active-low reset
// Frequency control
input wire [31:0] ftw_in, // Frequency Tuning Word (FTW)
input wire ftw_we, // write-enable strobe (1 clk pulse)
// Outputs (valid on clk_en rising pulse, i.e., at FS_HZ)
output reg signed [15:0] sin_q15, // signed Q1.15 sine
output reg signed [15:0] cos_q15, // signed Q1.15 cosine
output reg clk_en // 1-cycle strobe @ FS_HZ
);
`include "core/nco_q15_funcs.vh"
// ==========================================================
// Sample-rate enable: divide CLK_HZ down to FS_HZ
// - DIV must be an integer (CLK_HZ / FS_HZ).
// - clk_en goes high for exactly 1 clk cycle every DIV cycles.
// ==========================================================
localparam integer DIV = CLK_HZ / FS_HZ;
// Optional safety for misconfiguration (ignored by synthesis tools):
initial if (CLK_HZ % FS_HZ != 0)
$display("WARNING nco_q15: CLK_HZ (%0d) not divisible by FS_HZ (%0d).", CLK_HZ, FS_HZ);
// Counter width: enough bits to count to DIV-1 (use a generous fixed width to keep 2001-compatible)
// If you prefer, replace 16 with $clog2(DIV) on a tool that supports it well.
reg [15:0] tick_cnt;
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
tick_cnt <= 16'd0;
clk_en <= 1'b0;
end else begin
if (tick_cnt == DIV-1) begin
tick_cnt <= 16'd0;
clk_en <= 1'b1; // 1-cycle pulse
end else begin
tick_cnt <= tick_cnt + 16'd1;
clk_en <= 1'b0;
end
end
end
// ==========================================================
// Frequency control register
// - You present ftw_in and pulse ftw_we (1 clk) to update.
// ==========================================================
reg [31:0] ftw;
always @(posedge clk or negedge rst_n) begin
if (!rst_n) ftw <= ftw_from_hz(1000, PHASE_BITS, FS_HZ); // Start at 1khz
else if (ftw_we) ftw <= ftw_in;
end
// ==========================================================
// Phase accumulators
// - phase_sin advances by FTW once per sample (on clk_en).
// - cosine is generated by a +90° phase lead (π/2), i.e., add 2^(PHASE_BITS-2).
// Here we realize it by deriving phase_cos from phase_sin each sample.
// ==========================================================
reg [PHASE_BITS-1:0] phase_sin, phase_cos;
wire [PHASE_BITS-1:0] phase_cos_plus90 = phase_sin + ({{(PHASE_BITS-2){1'b0}}, 2'b01} << (PHASE_BITS-2)); // +90°
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
phase_sin <= {PHASE_BITS{1'b0}};
phase_cos <= {PHASE_BITS{1'b0}};
end else if (clk_en) begin
phase_sin <= phase_sin + ftw;
// Keep cosine aligned to the same sample using a +90° offset from updated phase_sin
phase_cos <= phase_cos_plus90 + ftw;
end
end
// ==========================================================
// Phase -> quadrant/index
// - q_*: top 2 bits select quadrant (0..3).
// - idx_*_raw: next QTR_ADDR_BITS select a point in 0..π/2.
// - For odd quadrants, mirror the LUT index.
// ==========================================================
wire [1:0] q_sin = phase_sin[PHASE_BITS-1 -: 2];
wire [1:0] q_cos = phase_cos[PHASE_BITS-1 -: 2];
wire [QTR_ADDR_BITS-1:0] idx_sin_raw = phase_sin[PHASE_BITS-3 -: QTR_ADDR_BITS];
wire [QTR_ADDR_BITS-1:0] idx_cos_raw = phase_cos[PHASE_BITS-3 -: QTR_ADDR_BITS];
wire [QTR_ADDR_BITS-1:0] idx_sin = (q_sin[0]) ? ({QTR_ADDR_BITS{1'b1}} - idx_sin_raw) : idx_sin_raw;
wire [QTR_ADDR_BITS-1:0] idx_cos = (q_cos[0]) ? ({QTR_ADDR_BITS{1'b1}} - idx_cos_raw) : idx_cos_raw;
// ==========================================================
// Quarter-wave 8-bit LUT (0..255). 64 entries map 0..π/2.
// ==========================================================
wire [7:0] lut_sin_mag, lut_cos_mag;
sine_qtr_lut64 u_lut_s (.addr(idx_sin), .dout(lut_sin_mag));
sine_qtr_lut64 u_lut_c (.addr(idx_cos), .dout(lut_cos_mag));
// ==========================================================
// Sign & scale to Q1.15
// - Scale: <<7 so 255 becomes 32640 (slightly below 32767).
// - Apply sign by quadrant: quadrants 2 & 3 are negative.
// ==========================================================
wire signed [15:0] sin_mag_q15 = {1'b0, lut_sin_mag, 7'd0};
wire signed [15:0] cos_mag_q15 = {1'b0, lut_cos_mag, 7'd0};
wire sin_neg = (q_sin >= 2); // quadrants 2,3
wire cos_neg = (q_cos >= 2);
wire signed [15:0] sin_q15_next = sin_neg ? -sin_mag_q15 : sin_mag_q15;
wire signed [15:0] cos_q15_next = cos_neg ? -cos_mag_q15 : cos_mag_q15;
// ==========================================================
// Output registers (update on clk_en)
// ==========================================================
always @(posedge clk or negedge rst_n) begin
if (!rst_n) begin
sin_q15 <= 16'sd0;
cos_q15 <= 16'sd0;
end else if (clk_en) begin
sin_q15 <= sin_q15_next;
cos_q15 <= cos_q15_next;
end
end
endmodule
// ------------------------------------------------------------
// 64-entry quarter-wave sine ROM (8-bit), indices 0..63 map 0..π/2.
// Plain Verilog case ROM. You can regenerate these with a script
// or replace with a vendor-specific ROM for BRAM inference.
// ------------------------------------------------------------
module sine_qtr_lut64(
input wire [5:0] addr,
output reg [7:0] dout
);
always @* begin
case (addr)
6'd0: dout = 8'd0; 6'd1: dout = 8'd6; 6'd2: dout = 8'd13; 6'd3: dout = 8'd19;
6'd4: dout = 8'd25; 6'd5: dout = 8'd31; 6'd6: dout = 8'd37; 6'd7: dout = 8'd44;
6'd8: dout = 8'd50; 6'd9: dout = 8'd56; 6'd10: dout = 8'd62; 6'd11: dout = 8'd68;
6'd12: dout = 8'd74; 6'd13: dout = 8'd80; 6'd14: dout = 8'd86; 6'd15: dout = 8'd92;
6'd16: dout = 8'd98; 6'd17: dout = 8'd103; 6'd18: dout = 8'd109; 6'd19: dout = 8'd115;
6'd20: dout = 8'd120; 6'd21: dout = 8'd126; 6'd22: dout = 8'd131; 6'd23: dout = 8'd136;
6'd24: dout = 8'd142; 6'd25: dout = 8'd147; 6'd26: dout = 8'd152; 6'd27: dout = 8'd157;
6'd28: dout = 8'd162; 6'd29: dout = 8'd167; 6'd30: dout = 8'd171; 6'd31: dout = 8'd176;
6'd32: dout = 8'd180; 6'd33: dout = 8'd185; 6'd34: dout = 8'd189; 6'd35: dout = 8'd193;
6'd36: dout = 8'd197; 6'd37: dout = 8'd201; 6'd38: dout = 8'd205; 6'd39: dout = 8'd208;
6'd40: dout = 8'd212; 6'd41: dout = 8'd215; 6'd42: dout = 8'd219; 6'd43: dout = 8'd222;
6'd44: dout = 8'd225; 6'd45: dout = 8'd228; 6'd46: dout = 8'd231; 6'd47: dout = 8'd233;
6'd48: dout = 8'd236; 6'd49: dout = 8'd238; 6'd50: dout = 8'd240; 6'd51: dout = 8'd242;
6'd52: dout = 8'd244; 6'd53: dout = 8'd246; 6'd54: dout = 8'd247; 6'd55: dout = 8'd249;
6'd56: dout = 8'd250; 6'd57: dout = 8'd251; 6'd58: dout = 8'd252; 6'd59: dout = 8'd253;
6'd60: dout = 8'd254; 6'd61: dout = 8'd254; 6'd62: dout = 8'd255; 6'd63: dout = 8'd255;
default: dout=8'd0;
endcase
end
endmodule

24
rtl/core/nco_q15_funcs.vh Normal file
View File

@@ -0,0 +1,24 @@
// ==========================================================
// Helper: FTW function (compile-time or runtime call)
// FTW = round( f_hz * 2^PHASE_BITS / FS_HZ )
// Notes:
// - Accepts integer Hz.
// - Uses 64-bit math to avoid overflow for typical params.
// - Can be called from a testbench or combinational logic that
// prepares 'ftw_in' before asserting 'ftw_we'.
// Example:
// initial begin
// #1;
// $display("FTW 1kHz = 0x%08x", ftw_from_hz(1000));
// end
// ==========================================================
function [31:0] ftw_from_hz;
input integer f_hz;
input integer phase_bits;
input integer fs_hz;
reg [63:0] numer;
begin
numer = ((64'd1 << phase_bits) * f_hz) + (fs_hz/2);
ftw_from_hz = numer / fs_hz;
end
endfunction