`timescale 1ns/1ps // ------------------------------------------------------------ // nco_q15.v // Tiny DDS/NCO @ FS_HZ sample rate with Q1.15 sine/cos outputs // - Phase accumulator width: PHASE_BITS (default 32) // - Quarter-wave LUT: 2^QTR_ADDR_BITS entries (default 64) // - Clock domain: CLK_HZ (default 120 MHz), creates 1-cycle strobe at FS_HZ // - Frequency control: write 'ftw' (32-bit tuning word) // FTW = round(f_out * 2^PHASE_BITS / FS_HZ) // ------------------------------------------------------------ module nco_q15 # ( // -------- Synth parameters -------- parameter integer PHASE_BITS = 32, // accumulator width parameter integer QTR_ADDR_BITS = 6, // 64-entry quarter-wave LUT parameter integer CLK_HZ = 120_000_000, // input clock (Hz) parameter integer FS_HZ = 40_000 // output sample rate (Hz) ) ( input wire clk, // CLK_HZ domain input wire rst_n, // async active-low reset // Frequency control input wire [31:0] ftw_in, // Frequency Tuning Word (FTW) // Outputs (valid on clk_en rising pulse, i.e., at FS_HZ) output reg signed [15:0] sin_q15, // signed Q1.15 sine output reg signed [15:0] cos_q15, // signed Q1.15 cosine output reg clk_en // 1-cycle strobe @ FS_HZ ); `include "core/nco_q15_funcs.vh" // ========================================================== // Sample-rate enable: divide CLK_HZ down to FS_HZ // - DIV must be an integer (CLK_HZ / FS_HZ). // - clk_en goes high for exactly 1 clk cycle every DIV cycles. // ========================================================== localparam integer DIV = CLK_HZ / FS_HZ; // Optional safety for misconfiguration (ignored by synthesis tools): initial if (CLK_HZ % FS_HZ != 0) $display("WARNING nco_q15: CLK_HZ (%0d) not divisible by FS_HZ (%0d).", CLK_HZ, FS_HZ); // Counter width: enough bits to count to DIV-1 (use a generous fixed width to keep 2001-compatible) // If you prefer, replace 16 with $clog2(DIV) on a tool that supports it well. reg [15:0] tick_cnt; always @(posedge clk) begin if (!rst_n) begin tick_cnt <= 16'd0; clk_en <= 1'b0; end else begin if (tick_cnt == DIV-1) begin tick_cnt <= 16'd0; clk_en <= 1'b1; // 1-cycle pulse end else begin tick_cnt <= tick_cnt + 16'd1; clk_en <= 1'b0; end end end // ========================================================== // Frequency control register // - You present ftw_in // ========================================================== reg [31:0] ftw; always @(posedge clk) begin ftw <= ftw_in; end // ========================================================== // Phase accumulators // - phase_sin advances by FTW once per sample (on clk_en). // - cosine is generated by a +90° phase lead (π/2), i.e., add 2^(PHASE_BITS-2). // Here we realize it by deriving phase_cos from phase_sin each sample. // ========================================================== reg [PHASE_BITS-1:0] phase_sin, phase_cos; wire [PHASE_BITS-1:0] phase_cos_plus90 = phase_sin + ({{(PHASE_BITS-2){1'b0}}, 2'b01} << (PHASE_BITS-2)); // +90° always @(posedge clk) begin if (!rst_n) begin phase_sin <= {PHASE_BITS{1'b0}}; phase_cos <= {PHASE_BITS{1'b0}}; end else if (clk_en) begin phase_sin <= phase_sin + ftw; // Keep cosine aligned to the same sample using a +90° offset from updated phase_sin phase_cos <= phase_cos_plus90 + ftw; end end // ========================================================== // Phase -> quadrant/index // - q_*: top 2 bits select quadrant (0..3). // - idx_*_raw: next QTR_ADDR_BITS select a point in 0..π/2. // - For odd quadrants, mirror the LUT index. // ========================================================== wire [1:0] q_sin = phase_sin[PHASE_BITS-1 -: 2]; wire [1:0] q_cos = phase_cos[PHASE_BITS-1 -: 2]; wire [QTR_ADDR_BITS-1:0] idx_sin_raw = phase_sin[PHASE_BITS-3 -: QTR_ADDR_BITS]; wire [QTR_ADDR_BITS-1:0] idx_cos_raw = phase_cos[PHASE_BITS-3 -: QTR_ADDR_BITS]; wire [QTR_ADDR_BITS-1:0] idx_sin = (q_sin[0]) ? ({QTR_ADDR_BITS{1'b1}} - idx_sin_raw) : idx_sin_raw; wire [QTR_ADDR_BITS-1:0] idx_cos = (q_cos[0]) ? ({QTR_ADDR_BITS{1'b1}} - idx_cos_raw) : idx_cos_raw; // ========================================================== // Quarter-wave 8-bit LUT (0..255). 64 entries map 0..π/2. // ========================================================== wire [7:0] lut_sin_mag, lut_cos_mag; sine_qtr_lut64 u_lut_s (.addr(idx_sin), .dout(lut_sin_mag)); sine_qtr_lut64 u_lut_c (.addr(idx_cos), .dout(lut_cos_mag)); // ========================================================== // Sign & scale to Q1.15 // - Scale: <<7 so 255 becomes 32640 (slightly below 32767). // - Apply sign by quadrant: quadrants 2 & 3 are negative. // ========================================================== wire signed [15:0] sin_mag_q15 = {1'b0, lut_sin_mag, 7'd0}; wire signed [15:0] cos_mag_q15 = {1'b0, lut_cos_mag, 7'd0}; wire sin_neg = (q_sin >= 2); // quadrants 2,3 wire cos_neg = (q_cos >= 2); wire signed [15:0] sin_q15_next = sin_neg ? -sin_mag_q15 : sin_mag_q15; wire signed [15:0] cos_q15_next = cos_neg ? -cos_mag_q15 : cos_mag_q15; // ========================================================== // Output registers (update on clk_en) // ========================================================== always @(posedge clk) begin if (!rst_n) begin sin_q15 <= 16'sd0; cos_q15 <= 16'sd0; end else begin sin_q15 <= sin_q15_next; cos_q15 <= cos_q15_next; end end endmodule // ------------------------------------------------------------ // 64-entry quarter-wave sine ROM (8-bit), indices 0..63 map 0..π/2. // Plain Verilog case ROM. You can regenerate these with a script // or replace with a vendor-specific ROM for BRAM inference. // ------------------------------------------------------------ module sine_qtr_lut64( input wire [5:0] addr, output reg [7:0] dout ); always @* begin case (addr) 6'd0: dout = 8'd0; 6'd1: dout = 8'd6; 6'd2: dout = 8'd13; 6'd3: dout = 8'd19; 6'd4: dout = 8'd25; 6'd5: dout = 8'd31; 6'd6: dout = 8'd37; 6'd7: dout = 8'd44; 6'd8: dout = 8'd50; 6'd9: dout = 8'd56; 6'd10: dout = 8'd62; 6'd11: dout = 8'd68; 6'd12: dout = 8'd74; 6'd13: dout = 8'd80; 6'd14: dout = 8'd86; 6'd15: dout = 8'd92; 6'd16: dout = 8'd98; 6'd17: dout = 8'd103; 6'd18: dout = 8'd109; 6'd19: dout = 8'd115; 6'd20: dout = 8'd120; 6'd21: dout = 8'd126; 6'd22: dout = 8'd131; 6'd23: dout = 8'd136; 6'd24: dout = 8'd142; 6'd25: dout = 8'd147; 6'd26: dout = 8'd152; 6'd27: dout = 8'd157; 6'd28: dout = 8'd162; 6'd29: dout = 8'd167; 6'd30: dout = 8'd171; 6'd31: dout = 8'd176; 6'd32: dout = 8'd180; 6'd33: dout = 8'd185; 6'd34: dout = 8'd189; 6'd35: dout = 8'd193; 6'd36: dout = 8'd197; 6'd37: dout = 8'd201; 6'd38: dout = 8'd205; 6'd39: dout = 8'd208; 6'd40: dout = 8'd212; 6'd41: dout = 8'd215; 6'd42: dout = 8'd219; 6'd43: dout = 8'd222; 6'd44: dout = 8'd225; 6'd45: dout = 8'd228; 6'd46: dout = 8'd231; 6'd47: dout = 8'd233; 6'd48: dout = 8'd236; 6'd49: dout = 8'd238; 6'd50: dout = 8'd240; 6'd51: dout = 8'd242; 6'd52: dout = 8'd244; 6'd53: dout = 8'd246; 6'd54: dout = 8'd247; 6'd55: dout = 8'd249; 6'd56: dout = 8'd250; 6'd57: dout = 8'd251; 6'd58: dout = 8'd252; 6'd59: dout = 8'd253; 6'd60: dout = 8'd254; 6'd61: dout = 8'd254; 6'd62: dout = 8'd255; 6'd63: dout = 8'd255; default: dout=8'd0; endcase end endmodule